Lawrence Livermore National Laboratory

Enhanced porosity and permeability in carbonate CO₂ storage reservoirs: An experimental and modeling study

Project Number: FWP-FEW0174 – Task 5

U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO₂ Storage August 20-22, 2013

Presenter: Megan Smith PI: Susan Carroll Yue Hao

Presentation Outline

- Benefit to Program
- Project Overview
- Technical Status
- Accomplishments
- Summary
- Appendix

Benefit to the Program

- This research project quantifies relationships between fluid flow, heterogeneity, and reaction rates specific to carbon storage in carbonate reservoirs by integrating characterization, solution chemistry, and simulation data.
- This project meets the Carbon Storage Program goals to develop technologies that will support industries' ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.

Project Overview Goals and Objectives

- The goal of this project is to calibrate key parameters in reactive transport models that will be used to predict final storage of CO₂ in carbonate EOR fields.
- This project will advance science-based forecasting for the transition of $CO_2 EOR$ operations to storage sites.
- Success is tied to the ability to scale reactive-flow and transport parameters over a range of carbonate rock types and permeability.

Technical Status

The research scope consists of three major tasks:

- Model calibration against existing experimental database of carbonate rocks from Midale-Weyburn Carbon Storage Project
 - Smith M, Sholokhova Y, Hao Y, and Carroll S, 2012, Evaporite caprock integrity: An experimental study of reactive mineralogy and pore-scale heterogeneity during brine–CO₂ exposure. *Env Sci & Technol,* doi:es3012723.
 - Carroll S, Hao Y, Smith M, Sholokhova Y, 2013, Development of scaling parameters to describe CO₂carbonate-rock interactions for the Marly Dolostone and Vuggy Limestone, Int J Greenhouse Gas Control, doi:10.1016/j.ijggc.2012.12.026
 - Smith M, Sholokhova Y, Hao Y, and Carroll S. (2013) CO₂-Induced Dissolution of Low Permeability Carbonates Part I: Characterization and Experiments, *Adv Water Res*, revised.
 - Hao Y, Smith M, Sholokhova Y, and Carroll S. (2013) CO₂-Induced Dissolution of Low Permeability Carbonates Part 2: Numerical Modeling of Experiments, *Adv Water Res*, revised.
- Study of a wider permeability range using cores from the Wellington, KS, CO₂ demonstration site (focus of presentation)
- Refined model and parameter scaling towards predicting changes in reservoir porosity and permeability

Motivation behind choices of characterization techniques and experimental scales

- Geochemical mineral-fluid interactions induced by CO₂ injection have a major effect on rock porosity and permeability evolution, which may potentially alter the behavior or performance of CO₂ geological storage and EOR operations;
- The mineral dissolution/precipitation and associated flow and reactive transport processes in porous media are described at different scales;

- Reactive transport modeling represents a critical component in assessment of geochemical impact of CO₂ water-rock interactions;
- However, a lack of proper calibration or upscaling of the effective macroscopic parameters over large field-scales hinders accurate reactive-transport modeling of CO₂ fate and transport.

Wellington, Kansas, flow unit model & samples

Wellington, KS, samples extend permeability range

Subcores exhibit lower permeability compared to well log data – larger samples are better

2.5x increase in diameter for "second-generation" Injection zone samples

Core-flood set-up adapted for new KS samples

- 60°C temp, 25 MPa confining pressure
- constant flowrate 0.05 mL/min
- 1.1m NaCl brine with pCO₂ = 3 MPa, at carbonate equilibrium

Brine-CO₂ exposure caused little change to properties of Simpson sandstone sample

Within larger samples, (macro)pore clusters isolated by finer-grained matrix material

Connected macro-pores, large deep injection zone sample

1.5 in / 38 mm

Reactive transport model adaptations for CO₂ core flooding experiments

- **3-D** continuum-scale reactive transport model (NUFT)
- CO₂-equilibrated brine with $pCO_2 = 3$ MPa injected into core sample at a constant 0.05 mL/min rate.
 - Handles either core size (15, 38-mm diameter).
- Model lateral boundaries kept impermeable; constant pressure and flux conditions imposed at top and bottom boundaries.
- Dolomite reaction kinetics

$$\frac{dm}{dt} = -S \left[k_{acid}^{298.15K} e^{-\frac{E_{acid}}{R} \left(\frac{1}{T} - \frac{1}{298.15K} \right)} a_{H^+}^n + k_{neutral}^{298.15K} e^{-\frac{E_{neutral}}{R} \left(\frac{1}{T} - \frac{1}{298.15K} \right)} \right] \left(1 - \frac{Q}{K} \right)$$

Utilizes nonlinear porosity-permeability correlation and surface area-porosity relationship

Important lessons from previous Weyburn results carried forward in new simulations

Chemical Model – Experiments allow combined reactivity to be calibrated

$$\frac{dm}{dt} = -S \left[k_{acid}^{298.15K} e^{-\frac{E_{acid}}{R} \left(\frac{1}{T} - \frac{1}{298.15K} \right)} a_{H^+}^n + k_{neutral}^{298.15K} e^{-\frac{E_{neutral}}{R} \left(\frac{1}{T} - \frac{1}{298.15K} \right)} \right] \left(1 - \frac{Q}{K} \right)$$

- Rate equations are tied to equilibrium
- Literature equilibrium constants provide starting points
- Calibrations combine rate constants and surface areas
- Pressure changes are not sensitive to reaction rate

Porosity – Permeability – Surface Area Relationships

- Change surface area in proportion to decreasing spherical grains
- "n" and permeability contrast terms allow for coupled porosity, permeability evolution

$$S_t = S_0 \left(\frac{\theta_t}{\theta_0}\right)^{2/3} \left(\frac{\phi_t}{\phi_0}\right)^{2/3}$$

Imaging-based characterization data scaled into larger model grids

Effective porosity and mineral phase volume fraction were calculated by a volumetric averaging approach.

$$\phi = \sum_{i}^{N} \phi_{i} / N \qquad \qquad \theta_{m} = \sum_{i}^{N} \theta_{m,i} / N$$

Permeability distributions were estimated by assessing macro-pore distribution and connectivity. Two porous regions were assumed within the rock sample: one representing interconnected *macro-pore regions*, and the other the *less porous matrix*.

Lawrence Livermore National Laboratory

Pre-experiment modeling results — Base Case

Sensitivity studies increasing permeability contrast by 10x

Porosity distributions after CO₂ flooding of **120 hours** (5 days)

Sensitivity studies — decreasing kinetic constants by 100x (acid) and 10x (neutral mechanism)

Porosity distributions after CO₂ flooding of **120 hours** (5 days)

Sensitivity studies — decreasing porosity-permeability relation (*n*) from 6 to 3

Porosity distributions after CO₂ flooding of **120 hours** (5 days)

(base case)

Accomplishments to Date

Publication of results of low permeability caprock response to CO₂ exposure (Smith et al., 2012, ES&T)

■ Weyburn-specific model and scaling results published in special issue (*Carroll et al., 2013, IJGGC*)

Development of model methodology to incorporate varying scales of characterization data to be published (Hao et al., in final revision, AWR)

- Additional samples from Arbuckle reservoir (Wellington, KS, KGS) acquired, imaged via CT, and characterized
- One full-length Simpson (Wellington, KS) experiment completed; Results of eight Weyburn experiments to be published (Smith et al., in final revision, AWR)
- Equipment modified to accept larger core samples
 (first larger-scale core to be tested September 2013)
- Pre-experimental modeling completed to inform upcoming experiments

Project Summary Implications for reservoir scale CCUS simulations

Key Findings

- Anisotropic permeability and mineral dissolution play dominant roles in porosity and permeability changes that will occur during CCUS operations
- Calibrated several reactive transport parameters that scale from microns to centimeters
- Porosity Permeability relationships are dependent on sample heterogeneity
 - pore regions are not well connected at previous core scales
- Future Plans: Refining the reactive-transport model, calibrating NMR well logs with experiments from the Wellington, KS, CO₂ demonstration site

Wellington, KS, dolomite

Weyburn, Canada, limestone

Weyburn, Canada, dolostone

Appendix

- Organizational Chart
- Gantt Chart
- Bibliography

Organization Chart

Gantt Chart: Task 5 Carbonates

		Fiscal Year 2012			Fiscal Year 2013				Fiscal Year 2014				
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
5.1.1	Finish model calibration with Weyburn data												
5.1.2	Finish premodel simulations for new experiments												
5.1.3	Refine model using new data												
5.1.1	Experimental Design												
5.2.2	Conduct experiments												
5.2.3	Interpret experimental results												

Bibliography

- Smith, M., Sholokhova, Y., Hao Y., and Carroll, S., 2013, Evaporite caprock integrity: An experimental study of reactive mineralogy and pore scale heterogeneity during brine CO₂ exposure. Environmental Science and Technology, <u>http://dx.doi.org/es3012723</u>.
- Carroll, S. Hao, Y., Smith, M., Sholokhova, Y. (2013), Development of scaling parameters to describe CO₂-carbonate-rock interactions for the Marly Dolostone and Vuggy Limestone, *I J Greenhouse Gas Control*, <u>http://dx.doi.org/10.1016/j.ijggc.2012.12.026</u>
- Smith, M. Sholokhova, Y., Hao, Y., and Carroll, S. (2013) CO₂-Induced Dissolution of Low Permeability Carbonates Part I: Characterization and Experiments, Advances in Water Resources, revised.
- Hao, Y., Smith, M., Sholokhova, Y., and Carroll, S. (2013) CO₂-Induced Dissolution of Low Permeability Carbonates Part 2: Numerical Modeling of Experiments, Advances in Water Resources, revised.